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Abstract We investigate the effects of the excitation power
on the photoluminescence spectra of aqueous CdTe/CdS core-
shell quantum dots. We have focused our efforts on nanopar-
ticles that are drop-cast on a silicon nitride substrate and dried
out. Under such conditions, the emission intensity of these
nanocrystals decreases exponentially and the emission center
wavelength shifts with the time under laser excitation,
displaying a behavior that depends on the excitation power.
In the low-power regime a blueshift occurs, whichwe attribute
to photo-oxidation of the quantum dot core. The blueshift can
be suppressed by performing the measurements in a nitrogen
atmosphere. Under high-power excitation the nanoparticles
thermally expand and aggregate, and a transition to a redshift
regime is then observed in the photoluminescence spectra. No
spectral changes are observed for nanocrystals dispersed in the
solvent. Our results show a procedure that can be used to
determine the optimal conditions for the use of a given set of
colloidal quantum dots as light emitters for photonic crystal
optical cavities.
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Introduction

In the past two decades, semiconductor nanoparticles that be-
have as quantum dots (QDs) have become an increasingly
important resource for biological imaging techniques [1]
and, more recently, as a quantum light source [2]. Cadmium
telluride (CdTe) was one of the first compounds to be used as
an efficient light-emitting nanoparticle, having since become a
commercially available product. Its capping with a thin shell
of cadmium sulfide (CdS), derived from stabilizing agents
containing a thiol functional group (R-SH) or other materials,
is widely used as a way of improving photoluminescence
efficiency and photostability, shielding the exciton from sur-
face defects and charge fluctuations in the vicinity of a bare
nanocrystal [3–8]. Capping with CdS has also been shown to
improve biocompatibility [9–11].

While biological applications require that the quantum dots
be used in aqueous media [12], their use as sources of quan-
tum light involves either drop-casting on top of photonic
structures or controlled deposition using more sophisticated
techniques, such as Dip-Pen Nanolithography (DPN) [13].
DPN is particularly suited for quantum optics applications
since it allows an accurate positioning of the quantum dots
on the photonic structure [14, 15]. As DPN relies on deposi-
tion via the water meniscus on an Atomic Force Microscope
(AFM) tip, water soluble QDs are very appropriate for use
with this technique. Whatever the deposition process, in the
end the CdTe quantum dots are put in contact with a solid
substrate and the solvent is dried before excitation. This con-
stitutes a very different environment from a cell interior [16,
17] or when the quantum dots are in suspension [18, 19], for
example. Since the environment can strongly affect the lumi-
nescence of semiconductor nanocrystals [20], the high sensi-
tivity of quantum optics applications to imperfections makes it
paramount to have a more complete understanding of how this
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environment affects the quality of the emitted light, when one
wants to use the quantum dots as a light source for quantum
optics applications.

In dry environments, QDs lose their mobility and the for-
mation of clusters is inevitable in the case of drop-casting, in
which case the nanoparticles will tend to agglomerate on the
rim of a droplet and form a series of high particle-density
clusters [21, 22]. Contact with oxygen becomes more signif-
icant in case the QDs are used in an open atmosphere and so
does laser heating and subsequent thermal effects [16, 23].

While some studies have been conducted on CdTe/CdS
QDs in a dry environment [24, 25], a complete picture of
phenomena that may happen and how they relate to each other
is still lacking. In this work, we perform a systematic study of
water-soluble CdTe/CdS QDs, coated with mercaptosuccinic
acid (MSA) as a stabilizing/functionalizing agent, in dried
droplets. We explore both regions with high and low nanopar-
ticle density, respectively on the rim and close to the center of
the dried-out water droplet. We see that the emission intensity
decreases exponentially with time under continuous excita-
tion, a behavior that is attributed to the photodegradation of
the nanocrystals. We show also that, under low-power excita-
tion, such QDs present a blueshift of their photoluminescence
(PL) over time. Conversely, as excitation power increases,
there is a redshift of the emission. While both behaviors have
been observed separately in previous works by different
groups, we show that there can be a continuous transition from
one to the other, in the same system. We propose a phenom-
enological model to account for both blue and red shifts in the
photoluminescence.

Synthesis and Methods

The nanocrystal quantum dots studied in this work were syn-
thesized in aqueous colloidal dispersion by adapting a previ-
ously reported method [26]. Briefly, QDs were prepared by
the addition of Te2− (obtained from metallic tellurium at
10−4 mol) in Cd(ClO4)2 solution (0.01 M) with high pH
(>10) in the presence of a stabilizing agent, the 3-
mercaptossuccinic acid (MSA).W-e used a 5:1:6.0 molar ratio
of Cd/Te/MSA. The reducing of metallic tellurium was medi-
ated by sodium borohydride (NaBH4) in a 1:30 molar ratio of
Te:NaBH4 in a high pH, using NaOH, and under nitrogen
saturated atmosphere. The growth of the QDs proceeded un-
der stirring, inert atmosphere and heating at 90 °C during 8 h
[27, 28].

The final structure of these nanocrystals is illustrated in
Fig. 1a. A CdS passivation layer is formed between the CdTe
core and the outer MSA shell due to the thiol group high
affinity with cadmium [4, 29]. We confirmed the presence of
the CdS layer by XPS (X-Ray Photoelectron Spectroscopy)
measurements. We observe the S2p line at 162.0 eV, which is

attributed to the CdS bond [30–32]. Based on the intensities of
the S2p, Cd3d and Te3d lines, and considering their sensitivity
factors, we estimate the thickness of this CdS layer as two or
three atomic layers.

It has been reported that such CdTe/CdS quantum dots
should have a type-II band alignment [33]. This would mean
that the electrons are more localized in the CdS passivation
shell, while the holes are more localized in the core. Figure 1b
shows the absorption and emission spectra of the quantum
dots dispersed in the solvent, before drop-cast deposition.
The narrow emission peak (approximately 25 nm of full
width at half-maximum) centered around 647 nm observed
in Fig. 1b shows how current aqueous colloidal nanocrystals
synthesis techniques can yield QDs with optical quality as
good as those diluted in organic solvents [29]. The narrow
linewidth of the photoluminescence peak is also an evidence
of the charge confinement given by the CdS layer.

The QDs showed an absorption peak at 590 nm. Following
Dagtepe et al. [34], we estimate the average diameter of the
QDs to be 3.5 nm, as seen in Fig. 1b inset. Transmision Elec-
tron Microscopy (TEM) images have confirmed the morphol-
ogy of the dots. Furthermore, using the coefficient of molar
extinction proposed by Yu et al. [35] and Lambert-Beer equa-
tions we also estimate the concentration of the QDs from the
first absorption peak as approximately 4.0 μM.

In order to analyze the optical properties of the
nanocrystals, we drop-cast them on a Si3N4 surface. As the
drop dried, more crystals moved to the rim by diffusion, cre-
ating two regions with different densities of nanocrystals, as
shown in Fig. 1c.

Microphotoluminescence (μ-PL) measurements were then
carried out with a multimode argon laser focused by a 50×
objective directly into the dried out drop, at room temperature,
in air. Emission spectra were measured using a 0.5 m spec-
trometer with a 1200 lines/mm diffraction grating and a 256×
256 pixels CCD.

Results and Discussion

Firstly, a sequence of μ-PL spectra of the center (low concen-
tration) region of the drop-cast nanocrystals drop on Si3N4

was taken over time in order to analyze variations with time
of the emission intensity of the nanocrystals under continuous
excitation. Results are shown in Fig. 2a, for low-power exci-
tation and in Fig. 2b for high-power excitation. A clear expo-
nential decrease of the emission intensity with illumination
time was observed, as shown in Fig. 2c and d. The excitation
intensity and the spatial position of the laser spot were kept
constant during the same set of measurements.

For both high and low excitation powers, the PL intensity
decreases exponentially with time, as shown by the exponen-
tial fits in Fig. 2c and d. For high power, Fig. 2d, a good fit to
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the decay is obtained only with a double exponential. In ad-
dition to the intensity decay, a small, but clear, shift of the
emission spectra was observed. The spectral shift of the PL
with illumination time is quantified in Fig. 2e for low excita-
tion power and in Fig. 2f for high excitation power, where,
after a Gaussian fit of the PL spectra, the center wavelength of
the emission is plotted as a function of excitation time. For the
low-power excitation a blueshift is observed while high-

power excitation induces an emission redshift. Similar mea-
surements were performed for a wide range of excitation in-
tensities, with similar results.

In order to follow the regime change from blueshift to
redshift of the spectra, the emission of the center region of
the drop on Si3N4 was measured for different excitation inten-
sities. To quantify the wavelength shift for a given excitation
intensity, a set of μ-PL measurements was taken, with an

CdTe
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b

Fig. 1 (a) Schematic diagram of the nanoparticles under study,
composed of a CdTe core enveloped by a layer of CdS and
mercaptosuccinic acid (MSA). (b) Optical absorption and
photoluminescence spectra of the CdTe/CdS nanocrystals dispersed in
the solvent. Inset: A Transmission Electron Microscopy (TEM) image
of the nanoparticles. The black bar at the bottom left corner stands for

2.0 nm. When dropcast, these particles agglomerate on the peripheral
region of the deposited drop, leaving its center with a low nanoparticle
density, as illustrated in (c) by a microphotograph of one such dried drop.
The green tint in the image is given by the reflection of white light on a
thin layer of Si3N4 used as substrate
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Fig. 2 Sequence of μ-PL spectra taken over time for (a) low-power
excitation, 5.3 kW/cm2, and (b) for high-power excitation, 75 kW/cm2.
Panels (c) and (d) show the evolution with time of the intensity maximum
for the low and high power excitations, respectively. The lines are

exponential fits to the data, with the decay times indicated in the figure.
The respective shift with time of the central wavelength of the
luminescence is shown in (e) for the low power excitation and in (f) for
the high power excitation
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interval of 3 s between each measurement, up to a total expo-
sition time of 300 s. The integration time for each measure-
ment was 1 s. The position of the laser on the sample and its
power were kept constant over the whole exposition time
(300 s). We define Δλ as the difference between the center
wavelength of the emission in the last spectrum of the set
(300 s of laser exposure) and in the first spectrum (1 s expo-
sition time). Afterwards, the position of the laser spot on the
sample was slightly changed and the same procedure was
repeated for the next value of excitation intensity. Therefore,
for each excitation intensity a fresh set of nanocrystals was
being excited. Figure 3a shows how Δλ determined in this
way changes with excitation intensity. A regime change from
blueshift to redshift is seen at excitation intensity around
30 kW/cm2.

To test the reversibility of those spectral shifts, a sequence
of μ-PL spectra with increasing excitation power was taken
rapidly (integration time of 1 s) over time, at the same spot at
the center of the drop deposited on Si3N4. After reaching
70 kW/cm2 the power was then lowered continuously, to ver-
ify if the emissionwould shift back to its previous wavelength.
Figure 3b shows that once entered the redshift regime at high
excitation intensities, a subsequent decrease of laser power
does not recover the low-power emission spectrum; a perma-
nent change in the nanocrystals emission occurs.

As our results show, the spectral shifts happen simulta-
neously to an exponential decrease in photoluminescence in-
tensity over time [36]. It is possible to observe both a blue and
a red shift in the emission from the same system of quantum
dot nanoparticles, by varying the excitation laser power. These
distinct phenomena indicate that the interaction of CdTe/CdS
nanocrystals deposited on Si3N4 with light is more complex
than simply absorption and emission of photons by artificial
atoms, and involves a combination of processes, which we
shall now discuss in more detail.

F i r s t l y , b o t h t h e e x p o n e n t i a l d e c r e a s e i n
photoluminescence intensity and the wavelength blueshift
are related to the same process of photo-oxidation of the CdTe
core, even though a shell of CdS is present [37, 38]. We be-
lieve this to be due to diffusion of oxygen through defects on
the shell crystal structure [39]. The processes behind the red-
shift itself were found to be a combination of nanocrystals
agglomeration [12, 40] and thermal effects [18], as discussed
below. As both these phenomena are more pronounced as the
laser intensity progressively increases, the redshift prevails for
higher intensities.

At least part of the observed redshift can be related to sim-
ple thermal expansion of the nanoparticles. The data from this
low-nanocrystal-concentration region of the dried drop are
consistent with a temperature increase of at most 10 K above
room temperature [41, 42]. This is in fact the maximal expect-
ed thermal effect of a focused laser for the powers and spot
size used in our experiments, given dissipation through con-
tact with the Si3N4 substrate which we suppose remains at
room temperature for regions more than 5 μm away from
the laser spot. Nevertheless, a small irreversible redshift was
observed, indicating that another process must be involved.
Given that temperatures are not sufficiently high for any sort
of surface reconstruction to take place, we suggest that the
process causing the irreversible redshift demonstrated in
Fig. 3b is a progressive agglomeration of nanoparticles in-
duced by the high intensity laser exposure. As the distance
between the nanocrystals diminishes, the exciton wave func-
tion will become delocalized between neighboring
nanocrystals, leading to a decrease in confinement and thus
to a decrease in the recombination energies. We note that a
type II band alignment as suggested by Dai et al. [33] would
favor this hypothesis. In this case, electrons would be more
localized in the shell and nanocrystal agglomeration would
lead to an effective increase of the electron quantum well. A
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Fig. 3 As the excitation intensity changes, the spectra of the nanocrystals
deposited on Si3N4 shift. Panel (a) shows the shift in the central
wavelength of the emission after illuminating for 300 s with each
excitation power. Each point in the graph was obtained in a slight
different spatial position at the center of the dried drop of nanocrystals.

Panel (b) shows the instant wavelength variation, i.e., the laser spot was
kept at same point for all excitation power intensities and the spectra was
recorded with a 1 s accumulation time. To minimize nanocrystals
degradation, the laser was blocked between the changes in laser power
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redshift can also be produced by a transfer of excitons from
small size to larger QDs [43], a process that is also favored by
the agglomeration of the nanoparticles.

To fully understand the aforementioned processes addition-
al measurements were made, at regions of different concentra-
tions of nanocrystals inside the dried drop deposited on Si3N4.
The results are shown in Fig. 4. Plots of the wavelength shifts,
Δλ (determined in the same way as in Fig. 3), as a function of
power intensity are shown in Fig. 4a for different concentra-
tion regions in a drying drop deposited on Si3N4. Some μ-PL
spectra were taken before the drop dried out completely, i.e.,
in a wet drop, where the nanocrystals concentration and dis-
persion are closer to their original values in suspension. After
the drop dried out, measurements were taken at its center and
also at the drop rim. The center region of the dried out drop
behave in accordance with the results discussed above, i.e., a
blueshift regime and then a redshift regime are observed with
increasing laser power. However, the blueshift regime is not
observed for the rim, where the nanocrystals concentration is
significantly higher and there is water present. The wet drop
displays an intermediate behavior.

For the high-concentration region, located at the rim, be-
sides the absence of the blueshift regime, the induced redshift
was found to be reversible, as indicated by Fig. 4b. These
results suggest that at the rim the nanoparticle agglomeration
occurs at a slower rate, likely due to more water being present
at this region. This makes the nanoparticles thermal expansion
the main mechanism responsible for the redshift. The revers-
ibility of the redshift in those circumstances also indicates that
size-selective mechanisms such as reactive photolysis does
not play a relevant part on the observed spectral shifts.

In the center of the dried droplet, a region of low concen-
tration of nanocrystals, as the spectra changes to a redshift
regime at higher excitation powers as described above, the

emission intensity maintains its behavior of exponential de-
crease with illumination time. This can be explained by the
underlying presence of the photo-oxidation mechanism,
which leads to a blueshift but is dominated at high powers,
as far as the spectral shift is concerned, by the redshift-
inducing processes. The photo-oxidation of the nanocrystals
should occur at all excitation powers, and continue to degrade
photoluminescence by increasing the probability of a faster
non-radiative relaxation. This is supported by data obtained
in a dry N2 atmosphere, for which blueshifts were not ob-
served for low concentrations and the decay rate of the
photoluminescence was lower than that in an open atmo-
sphere, as shown in Fig. 5.

This result is in accordance with previous reports account-
ing for blueshift suppression in similar oxygen-free
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change in the central wavelength of the emission with increasing
excitation intensity for a region in the rim of the dried out drop.
Measurements were taken in the same spot of the drop, with 1 s
integration time. To avoid severe deterioration of the nanocrystals, the
laser was blocked between each measurement
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30 kW/cm2 for both measurements. Inset: Blueshift is suppressed at the
center region of the nanocrystal dried drop under a dry nitrogen
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environments [44]. It is also interesting to note in Fig. 5 that to
obtain a good fit to the photoluminescence decrease with the
sample in air it is necessary to assume a biexponential decay.
This indicates that there are two mechanisms responsible for
the decay. We attribute the fast decay process to the core
photo-oxidation and the slower mechanism to other processes,
such as the laser induced agglomeration of nanoparticles and
thermal effects. In a dry N2 atmosphere the fast decay process
is suppressed and a good fit is obtained with a single
exponential.

Conclusion

We have presented data showing that photoluminescence
spectra of the same set of CdTe/CdS nanocrystals may under-
go either a blueshift or a redshift, depending on the power of
the excitation laser. A transition between these two regimes
was observed when the samples were drop cast to a silicon
nitride substrate and the experiments were run at room tem-
perature. At low-power excitation such nanoparticles are sub-
jected to a wavelength blueshift of their emission spectrum. A
redshift regime is observed for high-power excitation (inten-
sities typically greater than 30 kW/cm2). Experiments per-
formed on a dry N2 atmosphere corroborates our hypothesis
that the process responsible for the blueshift is the photo-
oxidation of the CdTe core, while the redshift is related to
agglomeration effects of the nanocrystals, being more pro-
nounced at regions of higher density of nanocrystals at the
rim of a dried out drop deposited on Si3N4. Thermal expan-
sion of the nanocrystals, caused by temperature changes due
to laser heating, also contributes to the emission wavelength
redshift observed at high-powers. An exponential decrease of
the emission intensity was also observed. Core photo-oxida-
tion, besides its part in the spectral shift, is also one of the
mechanisms responsible for this decay and it is completely
suppressed in a dry nitrogen atmosphere. Other processes con-
cur to the decrease of the nanocrystals emission intensity over
time, such as laser induced solvent evaporation and the con-
sequent agglomeration of nanoparticles.

All the effects reported here must be taken into account
when employing these colloidal quantum dots as sources of
light for experiments, for example, in Cavity Quantum Elec-
trodynamics, since this requires their deposition on a solid
surface. This is even more relevant if experiments are to be
conducted a t room tempera ture , s ince eff ic ien t
photoluminescence at high temperatures is one advantage of
such nanoparticles in comparison to more traditional semicon-
ductor quantum dots embedded in bulk material. On the other
hand, once laser induced blueshifts and redshifts have been
properly characterized for a given batch of nanoparticles, one
could envision using controlled exposure as means of fine-

tuning the emission wavelength to bring it into resonance with
an optical cavity.
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